کل فرمول های ریاضیات انتخاب کنید
Some of these functions I have seen defined under both intervals (0 to x) and (x to inf). In that case, both
variant definitions are listed.
gamma = Euler's
constant = 0.5772156649...
(x) = Gamma(x) = 
t^(x-1) e^(-t)dt (Gamma function)
B(x,y) = 
t^(x-1) (1-t)^(y-1)DT (Beta function)
Ei(x) = 
e^(-t)/t DT (exponential integral) or it's variant, NONEQUIVALENT form:
Ei(x) =
+ ln(x) + 
(e^t - 1)/t DT = gamma + ln(x) +
(n=1..inf)x^n/(n*n!)
li(x) = 
1/ln(t) DT (logarithmic integral)
Si(x) = 
sin(t)/t DT (sine integral) or it's variant, NONEQUIVALENT form:
Si(x) = 
sin(t)/t DT = PI/2 - 
sin(t)/t DT
Ci(x) = 
cos(t)/t DT (cosine integral) or it's variant, NONEQUIVALENT form:
CI(x) = - 
COs(t)/t DT = gamma + ln(x) + 
(COs(t) - 1) / t DT (cosine integral)
Chi(x) = gamma + ln(x) + 
(cosh(t)-1)/t DT (hyperbolic cosine integral)
Shi(x) = 
sinh(t)/t DT (hyperbolic sine integral)
Erf(x) = 2/PI^(1/2)
e^(-t^2) DT = 2/
PI
(n=0..inf) (-1)^n x^(2n+1) / ( n! (2n+1) ) (error function)
FresnelC(x) = 
COs(PI/2 t^2) DT
FresnelS(x) = 
sin(PI/2 t^2) DT
dilog(x) = 
ln(t)/(1-t) DT
Psi(x) =
ln(Gamma(x))
Psi(n,x) = nth derivative of Psi(x)
W(x) = inverse of x*e^x
L sub n (x) = (e^x/n!)( x^n e^(-x) ) (n) (laguerre polynomial degree n. (n) meaning nth derivative)
Zeta(s) =
(n=1..inf) 1/n^s
Dirichlet's beta function B(x) =
(n=0..inf) (-1)^n / (2n+1)^x
=============
Formal Integral Definition:


f(x) dx = lim
(d -> 0) 
(k=1..n) f(X
(k)) (x
(k) - x
(k-1))
when...
a = x0 <>1 <>2 < ... <>n = b
d = max (x1-x0, x2-x1, ... , xn - x(n-1))
x(k-1) <= X(k) <= x(k) k = 1, 2, ... , n


F '(x) dx = F(b) - F(a)
(Fundamental Theorem for integrals of derivatives)

a f(x) dx = a

f(x) dx
(if a is constant)

f(x) + g(x) dx =

f(x) dx +

g(x) dx


f(x) dx =

f(x) dx | (a b)


f(x) dx +


f(x) dx =


f(x) dx

f(u) du/dx dx =

f(u) du
(integration by substitution)
فرمول های انتگرال کاملا صحیح برای علاقه مندان ریاضی
Power of x.
xn dx = x(n+1) / (n+1) + C
(n -1) Proof
| 1/x dx = ln|x| + C
|
Exponential / Logarithmic
Trigonometric
sin x dx = -cos x + C
Proof
| csc x dx = - ln|CSC x + cot x| + C
Proof
|
COs x dx = sin x + C
Proof
| sec x dx = ln|sec x + tan x| + C
Proof
|
tan x dx = -ln|COs x| + C
Proof
| cot x dx = ln|sin x| + C
Proof
|
Trigonometric Result
COs x dx = sin x + C
Proof
| CSC x cot x dx = - CSC x + C
Proof
|
sin x dx = COs x + C
Proof
| sec x tan x dx = sec x + C
Proof
|
sec2 x dx = tan x + C
Proof
| csc2 x dx = - cot x + C
Proof
|
Inverse Trigonometric
arcsin x dx = x arcsin x + (1-x2) + C
|
arccsc x dx = x arccos x - (1-x2) + C
|
arctan x dx = x arctan x - (1/2) ln(1+x2) + C
|
Inverse Trigonometric Result
| dx
(1 - x2)
| = arcsin x + C
|
|
| dx
x (x2 - 1)
| = arcsec|x| + C
|
|
| dx
1 + x2
| = arctan x + C
|
|
|
Useful Identities
arccos x = /2 - arcsin x
(-1 <= x <= 1)
arccsc x = /2 - arcsec x
(|x| >= 1)
arccot x = /2 - arctan x
(for all x)
|
|
Hyperbolic
sinh x dx = cosh x + C
Proof
| csch x dx = ln |tanh(x/2)| + C
Proof
|
cosh x dx = sinh x + C
Proof
| sech x dx = arctan (sinh x) + C
|
tanh x dx = ln (cosh x) + C
Proof
| coth x dx = ln |sinh x| + C
Proof
|
========================
هیچ نظری موجود نیست:
ارسال یک نظر
thank you